
R2U

CRAN AS UBUNTU BINARIES

Dirk Eddelbuettel

11èmes Rencontres R 2025 @ Université Mons

19 May 2025

https://dirk.eddelbuettel.com/papers/recontres_r_r2u_may2025.pdf

https://dirk.eddelbuettel.com/papers/rencontres_r_r2u_may2025.pdf

AGENDA IN A FEW KEY WORDS

Key Issues

• CRAN as our key repositories
• Binaries as fastest installation of CRAN packages
• Full CRAN and system dependency resolution, reliably
• Without additional tools or cognitive load
• On a widely used (cloud / ci / server / laptop) platform

r2u 2/26

OUR FOCUS AND CONTRIBUTION

Key Design ‘Desirables’ for Package Deployment and Testing

• We want fast and automated task execution and fast feedback loops
• Task executions that are easy to setup / maintain and just work
• Importantly also reliable without ‘surprises’ or debugging nightmares
• Plus an additional “won’t break” aspect (more on that later)
• On platforms that are pervasive (cloud, CI, servers, laptops, …)

Key Design ‘Constraint’

• We have chosen a particular Linux ‘vertical’ here (i.e., Ubuntu)
• What we present could be implemented in other verticals

r2u 3/26

SPECIFIC CONTEXT

We focus on R here as it is ‘our tool of choice’

• But nothing that we present is specific to R
• One could create a similar for Python, Julia, Rust, …
• Essentially any language with a repository (but having CRAN helps)

We also focus on .deb binary packages

• Also nothing specific on this choice: ‘my tool of choice’ are .deb packages
• .rpm and others formats such as brew packages could be used

We equate ‘Deployment’ with Linux

• Common in cloud and server use
• But also on laptops and “this year, finally” on desktops

r2u 4/26

SO WHY CRAN ?

CRAN rules R: The Good

• Excellent repository with stringent quality control
• “Everything builds at @HEAD”: Marvellous quality guaranty
• This enables scripting and automation

CRAN rules R: The Less Good

• On Linux by default compilation from source
• we talk about alternatives such as p3m.dev a little later

• And compilation from source
• is generally (much) slower (for non-trivial tasks)
• is generally (much) more error prone (those dependencies …)

r2u 5/26

LINUX DISTRIBUTIONS OFFER HELP

Features

• Group packages for easier installation
• Organize dependencies (e.g. by analysing dynamic libraries, and more)
• Provide ‘cohorts’ aka ‘releases’
• Exist in a range

• ‘vertical’ with one platform as e.g. Linux distributions
• ‘horizontal’ as e.g. Conda across platforms

• We will focus on the vertical case

r2u 6/26

LINUX DISTRIBUTIONS OFFER HELP

Why Focus Here?

• The example of Ubuntu is quite intriguing
• It is generally “pretty good, pretty complete, pretty current”
• As well as polished and maintained well-enough (including first-rate security)
• Hence default at eg GitHub Actions, Google Colab and other instances
• Broad support for ‘other’ software in Ubuntu .deb form

• Intel supports it for ‘oneAPI’ (i.e. MKL, TBB, …)
• Nvidia supports it to support its GPUs
• and many more tools (Code, Positron, …)

This is not to start an argument. Similar efforts can be done and are being done for Fedora and OpenSUSE.

r2u 7/26

PACKAGE MANAGER

In a Distribution

• Generally runs as system user, can install system dependencies
• Can cover everything that is offered within the distribution
• Can cover version dependencies and possibly version pinning
• But cannot cover what is not packaged: often the relevant applications

In an Application

• Application-level package managers are common and excellent
• They cover a lot of ground getting other packages for this app
• They can cover package dependencies and possibly pinning
• They generally cannot install system dependencies

r2u 8/26

PACKAGE MANAGER

So Promise In Approach To “Join” Both

• Integrate the application packages into the distribution repositories
• Now both united and dealt with jointly the system package manager
• Application level requirements satisfied by system level manager

Several Past Attempts

• Several incomplete attempts in the past, c2d4u max’ed out at 6k out of 21k
• Some details in our ‘binary R packages’ arXiv paper (and earlier r2u talks)
• But now r2u is the first that got it working

• As the paper notes they are similar attempts for RHEL/FC (Iñaki), OpenSUSE (Detlef)

r2u 9/26

https://arxiv.org/abs/2103.08069

R2U IN A NUTSHELL

apt install r-cran-whatever

• Every CRAN package built, name prefixed with r-cran- and lower-cased
• The distribution build process wraps around the R installation
• So it is guaranteed the package can actually be loaded
• Thus every dependency formally declared, resolvable – and tested
• Supported (currently) for the three Ubuntu LTS releases on x86_64 aka amd64

• And now also for arm64 for Ubuntu 24.04

• More details at https://eddelbuettel.github.io/r2u

r2u 10/26

https://eddelbuettel.github.io/r2u

ALTERNATIVES

p3m.dev

• Compelling system offering breath across packages and OS choices
• Generally provides binaries

• But sometimes only source, unclear ex ante if one gets source or binary
• This can differ for the same package across LTS releases
• Also covers ‘time machine’ aspect continuing from MRAN

• Not integrated with the package manager: system deps are ‘harder’
• Mechanism to obtain required commands, but not automated / integrated

• But useful and e.g. it does provide our inputs here
• Overall ‘not bad at all’ given the huge task of deploying across OSs
• But we can do better by integrating with the system package manager

This would be a fair place to compare to PyPI, Conda,… but that is out of scope here – and I do not really use either of those. Sorry.
r2u 11/26

ADVANTAGES OF SYSTEM INTEGRATION

Missing Libraries are Installed

• Installing, say, a PostgreSQL-using package leads to installation of Postgres library

Used Libraries are Never Removed

• Package manager knows that the client package uses libpqN
• So when the system updates the library from releases N to N+1
• Package is no longer left broken by removing the dependency

• This feature is lacking in without system integration
• p3m.dev and r-universe binaries do not tie this back to system
• of course it also lacks when we install directly from source

In the narro sense you can argue that e.g. a CI check run is ephemeral and system updates never happen. Fine. It is still damn convenient on all other systems.

r2u 12/26

ADVANTAGES OF SYSTEM INTEGRATION: BREAKS WITHOUT

FROM rocker/r-ubuntu:20.04

RUN apt update -qq \
&& apt install -y r-cran-rcppgsl libgsl-dev \
&& Rscript -e 'install.packages(”RcppZiggurat”)' \
&& Rscript -e 'library(RcppZiggurat); cat(”All good\n”)'

Upgrade from focal to jammy, which means GSL 2.3.* to 2.7.*
RUN sed -i -e 's/focal/jammy/g' /etc/apt/sources.list \

&& sed -i -e 's/focal/jammy/g' \
/etc/apt/sources.list.d/c2d4u_team-ubuntu-c2d4u4_0_-focal.list

326 packages if we upgrade, so skip now, run if you prefer
#RUN apt update -qq \
&& apt upgrade -y

Now (for expedience just) upgrade RcppGSL, brings
upgraded libgsl28, removes libgsl27
RUN apt update -qq \

&& apt install -y r-cran-rcppgsl

And RcppZiggurat is borked -- this fails because libgsl23 is gone
so we comment it out not run break the docker build, but see 'manually'
#RUN Rscript -e 'library(RcppZiggurat)'

Simple Demo “Proof”: Breaks under
Ubuntu

We install eg RcppGSL (available as
binary) and the GSL, then build
RcppZiggurat

We upgrade from ‘focal’ to ‘jammy’, this
gets us a new libgsl2* version.

And that breaks RcppZiggurat.

Similar for other versioned shared
libraries: libicu*, libpq*, …

r2u 13/26

ADVANTAGES OF SYSTEM INTEGRATION: NO BREAK WITH R2U

FROM rocker/r2u:20.04

under r2u this installs RcppZiggurat binary and its dependencies
RUN apt update -qq \

&& Rscript -e 'install.packages(”RcppZiggurat”)' \
&& Rscript -e 'library(RcppZiggurat); cat(”All good\n”)'

Upgrade from noble to oracular, which means GSL 2.3.* to 2.7.*
RUN sed -i -e 's/focal/jammy/g' /etc/apt/sources.list \

&& sed -i -e 's/focal/jammy/g' /etc/apt/sources.list.d/r2u.list

Now (for expedience just) upgrade RcppGSL,
brings upgraded libgsl27, removes libgsl23
RUN apt update -qq \

&& apt install -y r-cran-rcppgsl

So RcppZiggurat is not broken as it got upgraded too
Because the package manager knows it was affected
Rscript -e 'library(RcppZiggurat); cat(”All good\n”)'

Simple Demo “Proof”: Works under r2u

Doing equivalent steps under r2u but
with packaged RcppZiggurat

But now upgrading RcppGSL … also gets
updated RcppZiggurat: No breakage.

To replicate, Dockerfiles from previous
and this slide are at GitHub.

r2u 14/26

https://github.com/eddelbuettel/r2u-demos/blob/master/gsl_removed/ubuntu_case/Dockerfile
https://github.com/eddelbuettel/r2u-demos/blob/master/gsl_removed/r2u_case/Dockerfile

ADVANTAGES OF SYSTEM INTEGRATION: DISCUSSION

General Issue

• Whenever you have a versioned shared library:
• package manager may roll to the next version
• but unless package manager knows of a ‘client package’ …
• … a current or previous version may get uninstalled
• leaving a non-package manager known build like a standard R package stranding

• This happened for example a lot with libicu* for Unicode
• my (non-r2u) desktop has libicu57, libicu70, libicu72 and libicu74 installed
• my current stringi builds uses libicu74 so all good

• Other examples are ‘versioned’ database, graphics libraries, or the spatial stack!
• r2u guarantees you will not have this breakage: the package manager knows!

r2u 15/26

BSPM: ANOTHER KEY COMPONENT

Bridge To Package Manager (by Iñaki Ucar)

• Cleverly ‘ intercepts’ install.packages() calls made by R
• So install.packages(c(”xgboost”, ”mlpack”)) does what you expect
• Translates these into corresponding apt calls

• Now R users do not need to know about apt
• Also works with dnf and other package managers

• We can just take a package and say ‘ install dependencies’ (eg via remotes)
• Ideal use case is for example continuous integrations

• Drop-in setup, no system admin needs, no debugging
• Use for example by my r-ci uses it

r2u 16/26

https://eddelbuettel.github.io/r-ci/

BSPM

Actual CI Example

Only whitespace removed to fit display

Can be used as drop-in file ci.yaml

“Easy. Fast. Reliable.” for CI

More documentation at r-ci

Run CI for R using https://eddelbuettel.github.io/r-ci/
name: ci
on:

push:
pull_request:

env:
_R_CHECK_FORCE_SUGGESTS_: ”false”

jobs:
ci:

strategy:
matrix:

include:
- {os: macOS-latest}
- {os: ubuntu-latest}

runs-on: ${{ matrix.os }}
steps:

- name: Checkout
uses: actions/checkout@v4

- name: Setup
uses: eddelbuettel/github-actions/r-ci@master

- name: Dependencies
run: ./run.sh install_all

- name: Test
run: ./run.sh run_tests

r2u 17/26

https://eddelbuettel.github.io/r-ci/

QUICK BACKGROUND: WHAT IS A BINARY PACKAGE?

R CMD INSTALL
--build creates
compressed archive

Corresponds to tree
of installed package
directory

But “naked” binary:
no system
dependency meta
info
NB: This example uses a simple
zero-dependency package.

~/git/zigg(master)$ R CMD INSTALL --build .
* installing to library ‘/usr/local/lib/R/site-library’
* installing *source* package ‘zigg’ ...
** this is package ‘zigg’ version ‘0.0.2’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 14.2.0-4ubuntu2) 14.2.0’
using C++ compiler: ‘g++-14 (Ubuntu 14.2.0-4ubuntu2) 14.2.0’
gcc -std=gnu2x -I”/usr/share/R/include” -DNDEBUG -I../inst/include -fpic -O3 -Wall -pipe -pedantic -c init.c -o init.o
g++-14 -I”/usr/share/R/include” -DNDEBUG -I../inst/include -fpic -O3 -Wall -pipe -pedantic -Wno-ignored-attributes -c ziggurat.cpp -o ziggurat.o
g++-14 -Wl,-S -shared -L/usr/lib/R/lib -Wl,-Bsymbolic-functions -flto=auto -ffat-lto-objects -Wl,-z,relro -o zigg.so init.o ziggurat.o -L/usr/lib/R/lib -lR
installing to /usr/local/lib/R/site-library/00LOCK-zigg/00new/zigg/libs
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* creating tarball
packaged installation of ‘zigg’ as ‘zigg_0.0.2_R_x86_64-pc-linux-gnu.tar.gz’
* DONE (zigg)
~/git/zigg(master)$r2u 18/26

QUICK BACKGROUND: WHAT IS A BINARY PACKAGE?

A .deb package contains a
similar (embedded) tarball

But also contains meta
information (and possibly
helper scripts)

The package build step runs
both the inner R CMD
INSTALL as well as
additional steps to
determine the meta data

$ apt-cache show r-cran-sf_1.0-20-1.ca2404.2_amd64.deb
Package: r-cran-sf
Version: 1.0-20-1.ca2404.2
Architecture: amd64
Maintainer: Dirk Eddelbuettel <edd@debian.org>
Installed-Size: 7968
Depends: libc6 (>= 2.38), libgcc-s1 (>= 3.0), libgdal34t64 (>= 3.8.0), \

libgeos-c1t64 (>= 3.11.0), libproj25 (>= 7.1.0), libstdc++6 (>= 13.1), \
r-base-core (>= 4.4.0), r-api-4.0, r-cran-classint, \
r-cran-dbi, r-cran-magrittr, r-cran-s2, r-cran-units, r-cran-rcpp

Suggests: r-cran-blob, r-cran-nanoarrow, r-cran-covr, r-cran-dplyr, r-cran-ggplot2, [....]
Section: gnu-r
Priority: optional
Homepage: https://cran.r-project.org/package=sf
Description: CRAN Package 'sf' (Simple Features for R)
Support for simple feature access, a standardized way to encode and analyze
spatial vector data. Binds to 'GDAL' <doi:10.5281/zenodo.5884351> for
reading and writing data, to 'GEOS' <doi:10.5281/zenodo.11396894> for
geometrical operations, and to 'PROJ' <doi:10.5281/zenodo.5884394> for
projection conversions and datum transformations. Uses by default the 's2'
package for geometry operations on geodetic (long/lat degree) coordinates.
$

NB We shortened the Suggests: list here.
r2u 19/26

MECHANICS OF R2U

How Does It Work?

• We run dpkg-buildpackage for each package inside a Docker container
• This gets us proper library dependencies as if Ubuntu built it
• Proper steps of a genuine distribution package

• We accelerate the builds where we can by using p3m.dev R binaries
• Which we unpackage inside the directory tree of the build
• So in most (but not all) cases we can skip the R CMD INSTALL step of package build

• Small amount of meta data for extra dependencies we need to declare
• Or a few builds we blacklist for various reasons

• We use standard tools to create a repository for, server it locally
• Internet2 mirror thanks to Tech Support in Liberal Arts & Sciences at Illinois

r2u 20/26

https://www.p3m.dev

MECHANICS OF R2U

How Does One Use It?

• Documentation site has script with four (or five with bspm) steps for Ubuntu
• Used thousands of times in continuous integration at GitHub
• There is also a dedicated GitHub Action to have this done in one step

How To Get Started?

• Dedicated Docker containers for deployment rocker/r2u for three flavours
• Or ‘manually’ apply script steps to a standard Ubuntu system, or run script
• Or ‘drop in’ the CI script from the previous page

r2u 21/26

BIGGER PICTURE

Usage Steadily Growing: Now over 42 Million Packages Shipped

r2u 22/26

BIGGER PICTURE

Discussion

• r2u shows we can integrate curated ‘application repositories’ into a Linux distro
• Doing so creates ‘total sum greater than sum of parts’ effects

• We get all the benefits of our preferred compute environment (here: Ubuntu)
• We get all the packages of our preferred application language (here: CRAN for R)
• The integrations is fast, easy, reliable as fully featured binaries are used

• First Extension: adding arm64/aarch64 for the approx 25% binary packages
• This can serve as model for other languages and/or environments
• Nothing fundamentally limiting this to either Ubuntu or R + CRAN

r2u 23/26

ONE MORE THING

r2u Useful For Non-Apt Binaries

One can also install Ubuntu 24.04 binaries from r-universe and r-multiverse, the

rp <- c(”https://community.r-multiverse.org/bin/linux/noble/4.5”,
getOption(”repos”))

install.packages(c(”glaredb”, ”polars”), repos=rp)

On an r2u container, installs two Rust-based R packages not-on-CRAN as r-multiverse
binary Ubuntu packages along with their dependency nanoarrow (here installed from
r2u via bspm). In 23 seconds.

r2u 24/26

AND SOME ‘MOVIES’

Some More Screencapture “Movies” Of r2u In Action

• tidyverse and rstan and brms in 33s (gif)

• tidyverse in 20s (gif)

• tidyverse and sf and lme4 (mp4)

• Single-Cell Genomics: 389 packages in 75 seconds (gif)

• ML packages xgboost, lightgbm, mlpack, torch in 10 seconds (gif)

These and more are at https://github.com/eddelbuettel/images

r2u 25/26

https://github.com/eddelbuettel/images/blob/master/2023-12-03/r2u_tidyverse_rstan_brms_33secs_2023-12-03_07-26.gif
https://github.com/eddelbuettel/images/blob/master/2024-01-03/tidyverse_in_20s_2024-01-03_14-38.gif
https://github.com/eddelbuettel/images/blob/master/2024-04-08/r2u_tidyverse_sf_lme4_2024-04-08.mp4
https://github.com/eddelbuettel/images/blob/master/2024-08-26/r2u_singleCellTK_demo_2024-08-26_10-13.gif
https://github.com/eddelbuettel/images/blob/master/2024-09-24/xgboost_lightgbm_mlpack_torch_10sec.gif
https://github.com/eddelbuettel/images

THAT’S IT!

Thank You! And Thanks To

• R (package) authors for creating something wonderful in the commons
• The CRAN team for all they do making it reliably accessible
• All past ‘cran2deb’ members: Albrecht, David, Stefan, Charles, Don, Michael, …
• posit for p3m.dev which provides a very usable base layer
• Iñaki for bspm making interfacing the repo so smooth, and many discussions
• Rami Dass and Liberal Arts & Sciences IT at UIUC for hosting r2u
• My GitHub sponsors for all the coffee money

And see https://eddelbuettel.github.io/r2u/ for r2u

r2u 26/26

