17 ILLINOIS

https://dirk.eddelbuettel.com/papers/rencontres_r_r2u_may2025.pdf

AGENDA IN A FEW KEY WORDS

Key Issues

- CRAN as our key repositories

- Binaries as fastest installation of CRAN packages

- Full CRAN and system dependency resolution, reliably

- Without additional tools or cognitive load

- On a widely used (cloud / ci / server / laptop) platform

r2u 2/26

OUR Focus AND CONTRIBUTION

Key Design ‘Desirables’ for Package Deployment and Testing

- We want fast and automated task execution and fast feedback loops
- Task executions that are easy to setup / maintain and just work

- Importantly also reliable without ‘surprises’ or debugging nightmares
- Plus an additional “won’t break” aspect (more on that later)

- On platforms that are pervasive (cloud, Cl, servers, laptops, ...)

Key Design ‘Constraint’
- We have chosen a particular Linux ‘vertical’ here (i.e., Ubuntu)

- What we present could be implemented in other verticals

r2u 3/26

SPECIFIC CONTEXT

We focus on R here as it is ‘our tool of choice’

- But nothing that we present is specific to R
- One could create a similar for Python, Julia, Rust, ...
- Essentially any language with a repository (but having CRAN helps)

We also focus on .deb binary packages

- Also nothing specific on this choice: ‘my tool of choice” are .deb packages
- .rpmand others formats such as brew packages could be used

We equate ‘Deployment’ with Linux

- Common in cloud and server use
- But also on laptops and “this year, finally” on desktops

r2u 426

So WHY CRAN ?

CRAN rules R: The Good

- Excellent repository with stringent quality control
- “Everything builds at @HEAD": Marvellous quality guaranty
- This enables scripting and automation

CRAN rules R: The Less Good
- On Linux by default compilation from source
- we talk about alternatives such as p3m.dev a little later
- And compilation from source

- is generally (much) slower (for non-trivial tasks)
- is generally (much) more error prone (those dependencies ...)

r2u 5/26

LINUX DISTRIBUTIONS OFFER HELP

Features

- Group packages for easier installation
- Organize dependencies (e.g. by analysing dynamic libraries, and more)
- Provide ‘cohorts’ aka ‘releases’
- Existin a range
- ‘vertical’ with one platform as e.g. Linux distributions
- ‘horizontal’ as e.g. Conda across platforms

- We will focus on the vertical case

r2u 6/26

LINUX DISTRIBUTIONS OFFER HELP

Why Focus Here?

- The example of Ubuntu is quite intriguing

- Itis generally “pretty good, pretty complete, pretty current”

- As well as polished and maintained well-enough (including first-rate security)
- Hence default at eg GitHub Actions, Google Colab and other instances

- Broad support for ‘other’ software in Ubuntu .deb form

- Intel supports it for ‘oneAPI’ (i.e. MKL, TBB, ...)
- Nvidia supports it to support its GPUs
- and many more tools (Code, Positron, ...)

This is not to start an argument. Similar efforts can be done and are being done for Fedora and OpenSUSE

r2u 7/26

PACKAGE MANAGER

In a Distribution
- Generally runs as system user, can install system dependencies
- Can cover everything that is offered within the distribution
- Can cover version dependencies and possibly version pinning
- But cannot cover what is not packaged: often the relevant applications

In an Application
- Application-level package managers are common and excellent
- They cover a lot of ground getting other packages for this app
- They can cover package dependencies and possibly pinning
- They generally cannot install system dependencies

r2u 8/26

PACKAGE MANAGER

So Promise In Approach To “Join” Both

- Integrate the application packages into the distribution repositories
- Now both united and dealt with jointly the system package manager
- Application level requirements satisfied by system level manager

Several Past Attempts

- Several incomplete attempts in the past, c2d4u max’ed out at 6k out of 21k
- Some details in our ‘binary R packages’ arxiv paper (and earlier r2u talks)
- But now r2u is the first that got it working
- As the paper notes they are similar attempts for RHEL/FC (Ifiaki), OpenSUSE (Detlef)

r2u 9/26

https://arxiv.org/abs/2103.08069

R2U IN A NUTSHELL

apt install r-cran-whatever
- Every CRAN package built, name prefixed with r-cran- and lower-cased
- The distribution build process wraps around the R installation
- So it is guaranteed the package can actually be loaded
- Thus every dependency formally declared, resolvable — and tested
- Supported (currently) for the three Ubuntu LTS releases on x86_64 aka amd64
- And now also for armé4 for Ubuntu 24.04

- More details at https://eddelbuettel.github.io/r2u

r2u 10/26

https://eddelbuettel.github.io/r2u

ALTERNATIVES

p3m.dev
- Compelling system offering breath across packages and OS choices
- Generally provides binaries
- But sometimes only source, unclear ex ante if one gets source or binary
- This can differ for the same package across LTS releases
- Also covers ‘time machine’ aspect continuing from MRAN
- Not integrated with the package manager: system deps are ‘harder’
- Mechanism to obtain required commands, but not automated / integrated
- But useful and e.g. it does provide our inputs here
- Overall ‘not bad at all’ given the huge task of deploying across OSs
- But we can do better by integrating with the system package manager

U This would be a fair place to compare to PyPI, Conda,... but that is out of scope here - and | do not really use either of those. Sorry. 11/26

ADVANTAGES OF SYSTEM INTEGRATION

Missing Libraries are Installed

- Installing, say, a PostgreSQL-using package leads to installation of Postgres library

Used Libraries are Never Removed
- Package manager knows that the client package uses libpgN

- So when the system updates the library from releases N to N+1
- Package is no longer left broken by removing the dependency

- This feature is lacking in without system integration

- p3m.dev and r-universe binaries do not tie this back to system
- of course it also lacks when we install directly from source

In the narro sense you can argue that e.g. a Cl check run is ephemeral and system updates never happen. Fine. It is still damn convenient on all other systems.

r2u 12/26

ADVANTAGES OF SYSTEM INTEGRATION: BREAKS WITHOUT

r2u

FROM rocker/r-ubuntu:20.04

RUN apt update -qq \
&6 apt install -y r-cran-rcppgsl libgsl-dev \
&6 Rscript -e 'install.packages(”RcppzZiggurat”)' \
&& Rscript -e 'library(Rcppziggurat); cat(”All good\n”)'

Upgrade from focal to jammy, which means GSL 2.3.% to 2.7.%
RUN sed -i -e 's/focal/jammy/g' /etc/apt/sources.list \
&§& sed -i -e 's/focal/jammy/g' \
/etc/apt/sources.list.d/c2d4u_team-ubuntu-c2d4u4_60_-focal.list

326 packages if we upgrade, so skip now, run if you prefer
#RUN apt update -qq \
&§& apt upgrade -y

Now (for expedience just) upgrade RcppGSL, brings
upgraded libgs128, removes libgsl127
RUN apt update -qq \

&& apt install -y r-cran-rcppgsl

And RcppZiggurat is borked -- this fails because libgs123 is gone
so we comment it out not run break the docker build, but see 'manually'
#RUN Rscript -e 'library(RcppZiggurat)'

Simple Demo “Proof”: Breaks under
Ubuntu

We install eg RcppGSL (available as
binary) and the GSL, then build
RcppZiggurat

We upgrade from ‘focal’ to ‘jammy’, this
gets us a new libgsl2* version.

And that breaks RcppZiggurat.
Similar for other versioned shared

libraries: libicu*, libpg*, ...

13/26

ADVANTAGES OF SYSTEM INTEGRATION: NO BREAK WITH R2U

FROM rocker/r2u:20.04

under r2u this installs RcppzZiggurat binary and its dependencies
RUN apt update -qq \

&6 Rscript -e 'install.packages(”RcppZiggurat”)' \

&6 Rscript -e 'library(RcppZiggurat); cat(”All good\n”)'

Upgrade from noble to oracular, which means GSL 2.3.* to 2.7.%
RUN sed -i -e 's/focal/jammy/g' /etc/apt/sources.list \
&& sed -i -e 's/focal/jammy/g' /etc/apt/sources.list.d/r2u.list

Now (for expedience just) upgrade RcppGSL,
brings upgraded libgsl127, removes 1libgsl123
RUN apt update -qq \

&& apt install -y r-cran-rcppgsl

So RcppZiggurat is not broken as it got upgraded too

Because the package manager knows it was affected
Rscript -e 'library(Rcppziggurat); cat(”All good\n”)'

r2u

Simple Demo “Proof”: Works under r2u

Doing equivalent steps under r2u but
with packaged RcppZiggurat

But now upgrading RcppGSL ... also gets
updated RcppZiggurat: No breakage.

To replicate, Dockerfiles from previous
and this slide are at GitHub.

14/26

https://github.com/eddelbuettel/r2u-demos/blob/master/gsl_removed/ubuntu_case/Dockerfile
https://github.com/eddelbuettel/r2u-demos/blob/master/gsl_removed/r2u_case/Dockerfile

ADVANTAGES OF SYSTEM INTEGRATION: DISCUSSION

General Issue

- Whenever you have a versioned shared library:

- package manager may roll to the next version

- but unless package manager knows of a ‘client package’ ...

- ..acurrent or previous version may get uninstalled

- leaving a non-package manager known build like a standard R package stranding
- This happened for example a lot with Tibicu* for Unicode

- my (non-r2u) desktop has libicu57, libicu70, libicu72 and libicu74 installed

- my current stringi builds uses libicu74 so all good
- Other examples are ‘versioned’ database, graphics libraries, or the spatial stack!
- r2u guarantees you will not have this breakage: the package manager knows!

r2u 15/26

BSPM: ANOTHER KEY COMPONENT

Bridge To Package Manager (by Ifiaki Ucar)
- Cleverly ‘intercepts’ install.packages() calls made by R
- So install.packages(c(”xgboost”, "mlpack”)) does what you expect
- Translates these into corresponding apt calls

- Now R users do not need to know about apt
- Also works with dnf and other package managers

- We can just take a package and say ‘install dependencies’ (eg via remotes)
- ldeal use case is for example continuous integrations

- Drop-in setup, no system admin needs, no debugging
- Use for example by my r-ci uses it

r2u 16/26

https://eddelbuettel.github.io/r-ci/

BSPM

ACtual CI Example # Run CI for R using https://eddelbuettel.github.io/r-ci/
name: ci
on:
o o push:
Only whitespace removed to fit display I, e
env:

_R_CHECK_FORCE_SUGGESTS_: "false”

Can be used as drop-in file ci.yaml Jobs:

G}
strategy:
matrix:

“Easy. Fast. Reliable.” for Cl include:
- {os: macOS-latest}
- {os: ubuntu-latest}

More documentation at r-ci SR R s

steps:
- name:
uses:
- name:
uses:
- name:

r2u

Checkout

actions/checkoutava

Setup
eddelbuettel/github-actions/r-ciamaster
Dependencies

./run.sh install_all
s Test
: ./run.sh run_tests

17/26

https://eddelbuettel.github.io/r-ci/

QuUICK BACKGROUND: WHAT IS A BINARY PACKAGE?

R CMD INSTALL
--build creates
compressed archive

Corresponds to tree
of installed package
directory

But “naked” binary:
no system
dependency meta
info

NB: This example uses a simple
zero-dependency package.

r2u

~/git/zigg(master)$ R CMD INSTALL --build .

* installing to library ‘/usr/local/lib/R/site-library’

* installing *source* package ‘zigg’

*% this is package ‘zigg’ version ‘0.0.2’

*% using staged installation

** libs

using C compiler: ‘gcc (Ubuntu 14.2.0-4ubuntu2) 14.2.0’

using C++ compiler: ‘g++-14 (Ubuntu 14.2.0-4ubuntu2) 14.2.0’

gcc -std=gnu2x -I"/usr/share/R/include” -DNDEBUG -I../inst/include -fpic -03 -Wall -pipe -pedantic -c
g++-14 -I"/usr/share/R/include” -DNDEBUG -I../inst/include -fpic -03 -Wall -pipe -pedantic -Wno-ignor
g++-14 -Wl,-S -shared -L/usr/lib/R/lib -Wl,-Bsymbolic-functions -flto=auto -ffat-lto-objects -Wl,-z,relro -
installing to /usr/local/lib/R/site-library/00LOCK-zigg/@@new/zigg/libs

*x R

** inst

*% byte-compile and prepare package for lazy loading

*% help

*%% installing help indices

*% building package indices

% testing if installed package can be loaded from temporary location

*% checking absolute paths in shared objects and dynamic libraries

#% testing if installed package can be loaded from final location

*% testing if installed package keeps a record of temporary installation path

* creating tarball

packaged installation of ‘zigg’ as ‘zigg_0.0.2_R_x86_64-pc-linux-gnu.tar.gz’

* DONE (zigg)

~/git/zigg(master)$ 18/26

QuUICK BACKGROUND: WHAT IS A BINARY PACKAGE?

A .deb package contains a
similar (embedded) tarball

But also contains meta
information (and possibly
helper scripts)

The package build step runs
both the inner R CMD
INSTALL as well as
additional steps to
determine the meta data

r2u

$ apt-cache show r-cran-sf_1.0-20-1.ca2404.2_amd64.deb
Package: r-cran-sf
Version: 1.0-20-1.ca2404.2
Architecture: amd64
Maintainer: Dirk Eddelbuettel <edd@debian.org>
Installed-Size: 7968
Depends: libc6 (>= 2.38), libgcc-s1 (>= 3.0), libgdal34t64 (>= 3.8.0), \
libgeos-c1t64 (>= 3.11.0), libproj25 (>= 7.1.0), libstdc++6 (>= 13.1), \
r-base-core (>= 4.4.0), r-api-4.0, r-cran-classint, \
r-cran-dbi, r-cran-magrittr, r-cran-s2, r-cran-units, r-cran-rcpp
Suggests: r-cran-blob, r-cran-nanoarrow, r-cran-covr, r-cran-dplyr, r-cran-ggplot2, [....]
Section: gnu-r
Priority: optional
Homepage: https://cran.r-project.org/package=sf
Description: CRAN Package 'sf' (Simple Features for R)
Support for simple feature access, a standardized way to encode and analyze
spatial vector data. Binds to 'GDAL' <doi:10.5281/zenodo.5884351> for
reading and writing data, to 'GEOS' <doi:10.5281/zenodo.11396894> for
geometrical operations, and to 'PROJ' <doi:10.5281/zenodo.5884394> for
projection conversions and datum transformations. Uses by default the 's2
package for geometry operations on geodetic (long/lat degree) coordinates.

NB We shortened the Suggests: list here.
19/26

MECHANICS OF R2U

How Does It Work?

- We run dpkg-buildpackage for each package inside a Docker container

- This gets us proper library dependencies as if Ubuntu built it
- Proper steps of a genuine distribution package

- We accelerate the builds where we can by using p3m.dev R binaries
- Which we unpackage inside the directory tree of the build
- Soin most (but not all) cases we can skip the R CMD INSTALL step of package build
- Small amount of meta data for extra dependencies we need to declare
- Or a few builds we blacklist for various reasons
- We use standard tools to create a repository for, server it locally
- Internet2 mirror thanks to Tech Support in Liberal Arts & Sciences at Illinois

r2u 20/26

https://www.p3m.dev

MECHANICS OF R2U

How Does One Use It?

- Documentation site has script with four (or five with bspm) steps for Ubuntu

- Used thousands of times in continuous integration at GitHub
- There is also a dedicated GitHub Action to have this done in one step

How To Get Started?

- Dedicated Docker containers for deployment rocker/r2u for three flavours
- Or ‘'manually” apply script steps to a standard Ubuntu system, or run script
- Or ‘drop in’ the Cl script from the previous page

r2u 21/26

BIGGER PICTURE

Usage Steadily Growing: Now over 42 Million Packages Shipped

r2u downloads of CRAN packages as Ubuntu .deb binaries r2u download of CRAN packages as Ubuntu .deb binaries
Aggregated webserver logs (in millions) Weekly download logs (in thousands, logarithmic scale)
i
H
£
i
E’\JJJ
20
100
10
0 10
2023 2024 2025 2003 2024 2025
Dta e 5t T3 May 225 1500 ot curten s f (0 Mgy 22534 10

r2u 22/26

BIGGER PICTURE

Discussion

- r2u shows we can integrate curated ‘application repositories’ into a Linux distro
- Doing so creates ‘total sum greater than sum of parts’ effects
- We get all the benefits of our preferred compute environment (here: Ubuntu)
- We get all the packages of our preferred application language (here: CRAN for R)
- The integrations is fast, easy, reliable as fully featured binaries are used
- First Extension: adding armé4/aarch64 for the approx 25% binary packages
+ This can serve as model for other languages and/or environments
- Nothing fundamentally limiting this to either Ubuntu or R + CRAN

r2u 23/26

IIHiIHHHHHHilIHHiII

r2u Useful For Non-Apt Binaries

One can also install Ubuntu 24.04 binaries from r-universe and r-multiverse, the

rp <- c("https://community.r-multiverse.org/bin/linux/noble/4.5",
getOption(”repos”))
install.packages(c(”glaredb”, "polars”), repos=rp)

On an r2u container, installs two Rust-based R packages not-on-CRAN as r-multiverse
binary Ubuntu packages along with their dependency nanoarrow (here installed from
r2u via bspm). In 23 seconds.

r2u 24/26

AND SOME ‘MOVIES'

Some More Screencapture “Movies” Of r2u In Action
- tidyverse and rstan and brms in 33s (gif)
- tidyverse in 20s (gif)
- tidyverse and sf and lme4 (mp4)
- Single-Cell Genomics: 389 packages in 75 seconds (gif)
- ML packages xgboost, lightgbm, mlpack, torch in 10 seconds (gif)

These and more are at https://github.com/eddelbuettel/images

r2u 25/26

https://github.com/eddelbuettel/images/blob/master/2023-12-03/r2u_tidyverse_rstan_brms_33secs_2023-12-03_07-26.gif
https://github.com/eddelbuettel/images/blob/master/2024-01-03/tidyverse_in_20s_2024-01-03_14-38.gif
https://github.com/eddelbuettel/images/blob/master/2024-04-08/r2u_tidyverse_sf_lme4_2024-04-08.mp4
https://github.com/eddelbuettel/images/blob/master/2024-08-26/r2u_singleCellTK_demo_2024-08-26_10-13.gif
https://github.com/eddelbuettel/images/blob/master/2024-09-24/xgboost_lightgbm_mlpack_torch_10sec.gif
https://github.com/eddelbuettel/images

THAT'S IT!

Thank You! And Thanks To

- R (package) authors for creating something wonderful in the commons

- The CRAN team for all they do making it reliably accessible

- All past ‘cran2deb” members: Albrecht, David, Stefan, Charles, Don, Michael, ...
- posit for p3m.dev which provides a very usable base layer

- Inaki for bspm making interfacing the repo so smooth, and many discussions
- Rami Dass and Liberal Arts & Sciences IT at UIUC for hosting r2u

- My GitHub sponsors for all the coffee money

And see https://eddelbuettel.github.io/r2u/ for r2u

r2u 26/26

