Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

Quantian as an environment for distributed statistical computing

Dirk Eddelbuettel

Debian Project edd@debian.org

DSC 2005 – Directions in Statistical Computing 2005 University of Washington, Seattle, August 13-14, 2005

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Example: Snow SnowFT papply Others

Summary

1 Background

2 Quantian

3 Distributed Computing

4 R Examples

5 Summary

Outline

マック 戸 イヨト イヨト トロ

Dirk Eddelbuettel

Background Introduction Timeline

- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others
- Summary

What is Quantian? A live-dvd for numbers geeks

- Quantian is a directly bootable and self-configuring Linux sytem that runs from a compressed dvd image.
- Quantian offers zero-configuration cluster computing using openMosix, including 'openMosix Terminalserver' via PXE.
- Quantian contains over 6gb of software, including an additional 4gb of 'quantitative' software: scientific, numerical, statistical, engineering, ...
- Quantian also contains editors, programming languages, complete latex support, two 'office' suites, networking tools and more.

Dirk Eddelbuettel

Background Introduction Timeline

- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others
- Summary

Quantian lineage Knoppix, clusterKnoppix, Debian

- Quantian is based on clusterKnoppix, which extends Knoppix with an openMosix-enabled kernel and applications, kernel modules and security patches.
- ClusterKnoppix extends Knoppix, an impressive 'linux on a cdrom' system which puts 2.1gb of software onto a cdrom along with auto-detection and configuration (but Knopppix followed Quantian and switched to 4gb dvds).
- Knoppix is based on Debian, a Linux distribution containing over 8000 source packages available for 12 architectures (such as i386, alpha, ia64, amd64, sparc or s390) produced by hundreds of individuals.

Timeline As provided by the releases

Quantian for distributed statistical computing

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

- 0.1 (March 2003): Initial version at DSC 2003.
- 0.2 (May 2003): Now based on Knoppix 3.2.
- 0.3 (June 2003): Switched to using clusterKnoppix which added openMosix clustering support.
- 0.3.9.* (Sep. 2003): Updated clusterKnoppix.
- 0.4.9.* (Oct. 2003 to Mar. 2004): Based on Knoppix 3.3.
- 0.5.9.* (June to Sep. 2004): Based on Knoppix 3.4, first 'kitchen sink' versions > 1gb for bootable DVDs.
- 0.6.9.* (Oct. to Dec. 2004): Based on Knoppix 3.6, size increased to 2.0gb.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian

Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

Motivation Major modes of use

- **Computing clusters** to speed up embarrassingly parallel tasks.
- **Computer labs** by enabling temporary use of a computing environment booted off a dvd, and/or netbooting.
- **Students / co-workers** as distributing DVDs enables work in identical environments with minimal administration.
- Convenience of not having to chase down new software releases, and to configure and installing it.
- **Easier installation** of a 'normal' workstation by booting off Quantian, and / or installing to hard disk getting a head start with 6gb of configured software.

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others

Summary

What is included? Broken down by field

- **Statistics:** GNU R (plus essentially all of CRAN and BioConductor; Ggobi, ESS), Xlispstat, Gretl, PSPP.
- **Bioinformatics:** BioConductor, BioPython, BioPerl and tools like emboss and blast2.
- **Mathematics:** Six computer algebra systems, matrix languages Octave (with add-on packages), Yorick and Scilab, TeXmacs front-end.
- **Physics:** CERN tools (Cernlib, Geant, PAW/PAW++), Scientific / Numeric Python, GNU GSL libraries.
- Visualization and graphics: OpenDX, Mayavi, Ggobi, Gnuplot, Grace, Gri, plotutils, xfig.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

What is included? Broken down by application area

- **Programming languages:** C, C++, Fortran, Java, Perl, Python, PHP, Ruby, Lua, Tcl, Awk, A+.
- Editors: XEmacs, Vim, jed, joe, kate, nedit, zile.
- **Scientific Publishing:** Extended LaTeX support with several frontends (xemacs, kile, lyx) and extensions.
- **Office software:** OpenOffice.org, KOffice, Gnumeric, and tools like the Gimp.
- **Finance:** Software from the Rmetrics project and the QuantLib libraries.
- **Networking:** ethereal, portmap, netcat, ethercap, bittorent, nmap, squid plus wireless tools and drivers.
- General tools: Apache, MySQL, PHP, and more.

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf
- R Examples Snow SnowFT papply Others
- Summary

How to use many computers Conceptual overview

- 'sneaker net': physically (or virtually via ssh) running from machine to machine, launching jobs and collecting results.
- 'Beowulf' clusters using 'MPI/PVM/...' require explicitly parallel code (though there are some R wrappers, more below).
- openMosix forms a 'single system image' computer and does require explicitly parallel code.
- Other approaches such as Condor or OSCAR which we won't cover here.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

Setup for PVM and MPI Should go into next Quantian revision

- PVM and MPI 'do not know' they are running inside.
- They want to talk to other hosts by ssh.
- PVM/MPI require distinct hostnames for all machines.
- Setup for ssh, LAM and PVM:
 - \$ cp -ax /root/.ssh ~knoppix
 - \$ chown -R knoppix.knoppix ~knoppix/.ssh
 - \$ ifconfig # note \$IP
 - \$ hostname Quantian\$IP

 - \$ scp /etc/hosts to_all_local_hosts

 - \$ lamboot /tmp/clusterhosts
 - \$ echo "conf" | pvm /tmp/clusterhosts

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

Distributed computing: Beowulf

- Beowulf clusters use message-passing interfaces such as LAM/MPI or PVM to communicate across nodes.
- This may require a sizable amount of new programming and explicitly parallel coding. 'Hard'
- Quantian includes several Beowulf tools and libraries:
 - LAM MPI libraries and run-time;
 - Mpich MPI libraries and run-time;
 - Pvm (Parallel Virtual Machine) libraries and run-time;
 - Sprng (Scalable Parallel Random Number Generator);
 - as well as documentation as examples for these.
- Contrast: openMosix takes existing programs and moves them around nodes in the cluster to achieve optimal load across all nodes in the cluster – no alteration to algorithms, or new programming.

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others
- Summary

Cluster computing: openMosix

- Easiest way to distribute computing load, esp. for 'embarrassingly parallel' tasks, as the kernel schedules tasks across the cluster.
- Since release 0.3, Quantian contains a kernel with the openMosix patch as well as a set of openMosix utilities.
- As a result, "instant cluster computing" is possible based on a single dvd or iso image:
 - 1 boot one master instance from the dvd or hard disk,
 - 2 enable 'openmosixterminalserver' from the menu,
 - 3 boot 1, 2, ... 'slave' nodes via PXE protocol (available in most recent computers) from master, and
 - 4 enjoy openMosix on the cluster.
- Big advantage: Identical software configuration, library versions, ... throughout the cluster.

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others

Summary

Cluster computing: openMosix (cont.)

- clusterKnoppix autoconfigures and autodiscovers the nodes. and enables (root) ssh access between them.
- openMosix is ideal for stand-alone programs such as 'old fashioned' C++ or Fortran apps that 'just run'.
- In general, any program without shared memory, or threads, will migrate though I/O may bring jobs back to the front node.
- Ian Latter's CHAOS projects addresses some of the security aspects by overlaying a VPN allowing for private clusters on top of public networks.
- Mix-and-match with clusterKnoppix or CHAOS is easy, any identical kernel and openMosix version can join.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples

SnowFT papply

Others

Summary

R Examples: Snow

- Tierney et al. introduced the 'Simple Network of Workstations' (SNOW) for R.
- Snow takes care of all communications, and the user concentrates on higher-level abstractions.
- Snow can use sockets, pvm or mpi to communicate, and includes support for two parallel RNG streams.
- Snow employs the existing CRAN packages rmpi, rpvm, rsprng/rlecuyer.
- Snow provides a host of functions clusterSplit, clusterCall, clusterApply, clusterApplyLB, clusterEvalQ, clusterExport, parLapply parRapply, parCapply, parApply, parMM, parSapply.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples

SnowFT papply

Others

Summary

R Examples: Snow (cont.)

- Snow example of a simple bootstrap provided by Luke Tierney.
- Example uses code from the boot package with functions and datasets from Davison & Hinkley (1997)
- Basic (non-parallel) bootstrap code:

where nuke.boot is the returned bootstrap object.

Dirk Eddelbuettel

Background Introduction Timeline

Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples

Snow

SnowFT papply

Others

Summary

R Examples: Snow (cont.)

• This can be generalized fairly easily to work in parallel:

```
library(rsprng)
library(snow)
[...]
cl <- makeCluster(nbClusters, "MPI")
clusterSetupSPRNG(cl)
[...]
clusterEvalQ(cl, z<-library(boot))
[...]
cl.nuke.boot <-
    clusterCall(cl,boot,nuke.data, nuke.fun,
        R=round(nbBootstraps/nbClusters),
        m=1, fit.pred=new.fit, x.pred=new.data)))</pre>
```

where cl.nuke.boot is a list containing the per-node returned bootstrap objects.

• Requires a little bit of extra effort to splice the list of per-node results together.

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others
- Summary

R Examples: SnowFT

- Ševčíková and Rossini have extended Snow to allow for fault-tolerance, recovery and improved replicability in the SnowFT package.
- SnowFT provides a high-level function performParallel().
- However, SnowFT supports only PVM and not LAM/MPICH.
- The code in her example1.R does not migrate under openMosix (presumably due to I/O in the SnowFT handler) whereas the Snow example migrates well.
- · However, explicitly launching PVM works.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

R Examples: papply

- Currie recently introduced papply, a parallel version of the apply function which also uses RMPI to farm out tasks. Similar to Snow, it offers a high-level abstraction complete with cluster initialization if required.
- Two simple examples are provided on the help page for papply. The shorter one is simply numberLists <- lists(1:10, 4:40, 2:27) results <- papply(numberLists, sum) results

which illustrates the elegant generalization of apply.

• Similarly, we can create arbitrary lists and functions to operate on them.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

R Examples: biopara and taskPR

- Lazar and Schoenfeld introduced biopara, a self-contained (i.e. no PVM/MPI) system for parallel code in R. It is potentially cross-platform as pure socket communications are employed. It provides a function pboot() for parallel bootstraps.
- The ASPECT Project has an initiative called Parallel R which contains a wrapper to Scalapack (RScalaPack) as well as task-R (taskPR). taskPR supports a 'parellel engine' to which expressions are submitted, and from which results can be retrieved. LAM is used as the communications mechanism.
- A detailed look at these newer contributions is beyond the scope of this talk.

Summary

Dirk Eddelbuettel

- Background Introduction Timeline
- Quantian Motivation Content
- Distributed Computing Overview Preparation Beowulf openMosix
- R Examples Snow SnowFT papply Others
- Summary

- Modern statistical computing applications (e.g. MCMC, bootstrap, boosting, ...) require simulations.
- Also, sensitivity analysis often requires re-running similar code with slight parameter variations.
- Such 'embarassingly parallel' problems profit greatly from a cluster: *M* parallel runs on *N* nodes.
- Several approaches for cluster computing are available directly from R.
- Quantian provides these approaches out of the box.

Dirk Eddelbuettel

Background Introduction Timeline

Quantian Motivation Content

Distributed Computing Overview Preparation Beowulf openMosix

R Examples Snow SnowFT papply Others

Summary

Summary More information, links, ...

http://dirk.eddelbuettel.com/quantian

http://www.quantian.org