
INTRODUCTION TO RCPP

Dirk Eddelbuettel

Invited “L&L” Talk at Apple Inc.

15 Dec 2020

https://dirk.eddelbuettel.com/papers/apple_rcppIntro_dec2020.pdf

https://dirk.eddelbuettel.com/papers/apple_rcppIntro_dec2020.pdf

WHO AM I ?

Talk @ Apple 2/68

MY DAY JOB

Talk @ Apple 3/68

MY OTHER JOBS

Academic

• (Adjunct) Clinical Professor, University of Illinois
• teaching a Data Science Programming Methods class

Open Source

• Debian developer
• since 1995, currently maintaining about 175 packages

• R package author
• since 2002, author or maintainer of over 60 CRAN packages
• R Foundation Board Member

• Rocker Project co-founder
• Docker for R, including official ‘r-base’ image

Talk @ Apple 4/68

INTRODUCTION TO RCPP

Talk @ Apple 5/68

VERY BROAD OUTLINE

Overview

• Why ?

• How ?

Talk @ Apple 6/68

INTRODUCTION: WHY?

Talk @ Apple 7/68

SO WHY RCPP?

Three key reasons

• Speed, Performance, …

• Do things you could not do before

• Easy to extend R this way

Talk @ Apple 8/68

SIMPLE EXAMPLE

R Version of ‘ is this number odd or even’

isOdd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
isOdd_r(42L)

[1] FALSE

Talk @ Apple 9/68

SIMPLE EXAMPLE (CONT.)

C++ Version of ‘ is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

}

Free-standing code, not yet executable…

Talk @ Apple 10/68

SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘ is this number odd or even’

Rcpp::cppFunction(”
bool isOdd_cpp(int num = 10) {

bool result = (num % 2 == 1);
return result;

}”)
isOdd_cpp(42L)

[1] FALSE

Talk @ Apple 11/68

SIMPLE EXAMPLE (CONT.)

In R

##
isOdd_r <- function(n=10L) {

res = (n %% 2L == 1L)
return(res)

}
isOdd_r(42L)

[1] FALSE

In C++ via Rcpp

Rcpp::cppFunction(”
bool isOdd_cpp(int n=10) {

bool res = (n % 2 == 1);
return res;

}”)
isOdd_cpp(42L)

[1] FALSE

Talk @ Apple 12/68

SECOND EXAMPLE: VAR(1)

Let’s consider a simple possible VAR(1) system of k variables.

For k = 2:

Xt = Xt−1B+ Et

where Xt is a row vector of length 2, B is a 2 by 2 matrix and Et is a
row of the error matrix of 2 columns.

Talk @ Apple 13/68

SECOND EXAMPLE: VAR(1)

In R code, given both the coefficient and error matrices (revealing k
and n):

rSim <- function(B,E) {
X <- matrix(0,nrow(E), ncol(E))
for (r in 2:nrow(E)) {

X[r,] = X[r-1,] %*% B + E[r,]
}
return(X)

}

Talk @ Apple 14/68

SECOND EXAMPLE: VAR(1)

cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
int m = E.n_rows; int n = E.n_cols;
arma::mat X(m,n);
X.row(0) = arma::zeros<arma::mat>(1,n);
for (int r=1; r<m; r++) {

X.row(r) = X.row(r-1) * B + E.row(r);
}
return X; }', depends=”RcppArmadillo”)

a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)
benchmark(cppSim(a,e), rSim(a,e), order=”relative”)[,1:4]

test replications elapsed relative
1 cppSim(a, e) 100 0.009 1.000
2 rSim(a, e) 100 0.696 77.333

Talk @ Apple 15/68

SO WHEN DO WE USE RCPP?

New things: Easy access to C/C++ libraries

• Sometimes speed is not the only reason
• C & C++ provide numerous libraries + APIs we may want to use
• Easy to provide access to as Rcpp eases data transfer

Talk @ Apple 16/68

AN ASIDE

Talk @ Apple 17/68

GROWTH

2010 2012 2014 2016 2018 2020

0
50

0
10

00
15

00
20

00

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
50

0
10

00
15

00
20

00

2010 2012 2014 2016 2018 2020

0
2

4
6

8
10

12

Data current as of December 13, 2020.

Talk @ Apple 18/68

USERS ON CORE REPOSITORIES

Rcpp is currently used by

• 2151 CRAN packages

• 207 BioConductor packages

• an unknown (but “large”) number of GitHub projects

Talk @ Apple 19/68

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 MASS dplyr Matrix
2.868 1.435 1.237 1.126 0.733

Talk @ Apple 20/68

PAGERANK

RColorBrewer
zoo
scales
raster
lubridate
doParallel
lattice
reshape2
sp
igraph
foreach
shiny
purrr
tidyr
plyr
httr
survival
RcppArmadillo
mvtnorm
jsonlite
rlang
tibble
data.table
stringr
magrittr
Matrix
dplyr
MASS
ggplot2
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of December 2020

Talk @ Apple 21/68

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0
db <- db[!duplicated(db[,1]),] # rows: nb of pkgs,
nTot <- nrow(db) # cols: diff attributes
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE,

installed=db))
nCompiled <- table(db[, ”NeedsCompilation”])[[”yes”]]
propRcpp <- nRcpp / nCompiled * 100
data.frame(tot=nTot, totRcpp = nRcpp,

totCompiled = nCompiled,
RcppPctOfCompiled = propRcpp)

tot totRcpp totCompiled RcppPctOfCompiled
1 16794 2151 4060 52.9803

Talk @ Apple 22/68

INTRODUCTION: HOW?

Talk @ Apple 23/68

JUMPING RIGHT IN: VIA RSTUDIO

Talk @ Apple 24/68

A FIRST EXAMPLE: CONT’ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/

Talk @ Apple 25/68

A FIRST EXAMPLE: CONT’ED

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We ask Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name

Talk @ Apple 26/68

ANOTHER EXAMPLE: FOCUS ON SPEED

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

Talk @ Apple 27/68

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

Talk @ Apple 28/68

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.010 1.0
2 f(15) 100 0.097 9.7
3 f(20) 100 1.177 117.7

Talk @ Apple 29/68

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }')

Using it on first 11 arguments
sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55
Talk @ Apple 30/68

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

test replications elapsed relative
1 f(20) 100 1.142 571
2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.

Talk @ Apple 31/68

SOME BACKGROUND

Talk @ Apple 32/68

TYPES

R Type mapping

Standard R types (integer, numeric, list, function, … and compound
objects) are mapped to corresponding C++ types using extensive
template meta-programming – it just works:

library(Rcpp)
cppFunction(”NumericVector la(NumericVector x){

return log(abs(x));
}”)
la(seq(-5, 5, by=2))

Also note: vectorized C++! log(abs()) on vectors as R would.

Talk @ Apple 33/68

STL TYPE MAPPING

Use of std::vector<double> and STL algorithms:

#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), f);
return x;

}

Not vectorized but std::transform() ‘sweeps’ f() across.
Talk @ Apple 34/68

STL TYPE MAPPING

Used via

library(Rcpp)
sourceCpp(”code/logabs2.cpp”)
logabs2(seq(-5, 5, by=2))

Talk @ Apple 35/68

TYPE MAPPING IS SEAMLESS

Simple outer product of a col. vector (using RcppArmadillo):

library(Rcpp)
cppFunction(”arma::mat v(arma::colvec a) {

return a*a.t();}”,
depends=”RcppArmadillo”)

v(1:3)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Uses implicit conversion via as<> and wrap – cf vignette Rcpp-extending.

Talk @ Apple 36/68

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-extending.pdf

C++11: LAMBDAS, AUTO, AND MUCH MORE

We can simplify the log(abs(...)) example further:

#include <Rcpp.h>
// [[Rcpp::plugins(cpp11)]]

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<double> logabs3(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(),
[](double x) {

return ::log(::fabs(x));
});

return x;
}

Talk @ Apple 37/68

HOW TO: MAIN USAGE PATTERNS

Talk @ Apple 38/68

BASIC USAGE: EVALCPP()

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.79769e+308

Talk @ Apple 39/68

BASIC USAGE: CPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function

Talk @ Apple 40/68

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and
cppFunction(). It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from
package inline, but provides even more ease-of-use, control and
helpers – freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

Talk @ Apple 41/68

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

BASIC USAGE: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from
can be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of December 2020, there are 2151 CRAN and 207 BioConductor
packages which use Rcpp all offering working, tested, and reviewed
examples.

Talk @ Apple 42/68

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package:

Talk @ Apple 43/68

PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives as e.g. Rcpp-
Armadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}
Talk @ Apple 44/68

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

• Full copies: Do what mlpack does and embed a full copy;
larger build time, harder to update, self-contained

• With linking of libraries: Do what e.g. RcppGSL does and use
hooks in the package startup to store compiler and linker
flags which are passed to environment variables

• With C++ template headers only: Do what RcppArmadillo and
other do and just point to the headers

More details in extra vignettes.

Talk @ Apple 45/68

PACKAGES AND RCPP

New vignette and recent paper

Talk @ Apple 46/68

https://arxiv.org/abs/1911.06416

BIG PICTURE

Talk @ Apple 47/68

SHOULD YOU USE RCPP? OR NOT?

Choice is yours

• Code generation helps remove tedium
• Interfaces are shorter / simpler / more R like

• recall the is_odd function earlier

• Plain C API to R is of course perfectly fine
• But IMHO requires more work

• more manual steps for type conversion
• additional required memory protection
• all of which is error prone

Talk @ Apple 48/68

COMPARE

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for(int i = 0; i < nab; i++)

xab[i] = 0.0;
for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector convolve2cpp(Rcpp::NumericVector a,

Rcpp::NumericVector b) {
int na = a.length(),

nb = b.length();
Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}

You always have a choice between the
code (from Section 5.10.1 of Writing R
Extensions) on the left, or the
equivalent Rcpp code on the right.

Talk @ Apple 49/68

MACHINE LEARNING

Talk @ Apple 50/68

OVERVIEW

Among the 2150+ Rcpp + CRAN packages, several wrap ML libraries.

Here are three:

• RcppShark based on Shark (but archived in March 2018)
• dlib based on DLib
• mlpack brings us MLPACK

Talk @ Apple 51/68

https://image.diku.dk/shark/
http://dlib.net/ml.html
https://www.mlpack.org/

MLPACK

High-level:

• Written by Ryan Curtin et al, Georgia Tech

• Uses Armadillo, and like Armadillo, “feels right”

• Qiang Kou created ‘RcppMLPACK v1’, it is on CRAN

Talk @ Apple 52/68

MLPACK ‘V2/V3’

High-level:

• A few of us were trying to update RcppMLPACK to ‘v2’

• Instead of embedding, an external library is used

• This makes deployment a little tricker on Windows and macOS

• We are still waiting on macOS installation of libraries

Now following GSoC 2020:

• Integrates new wrappers from the MLPACK side

• At last on CRAN for just about a week (!!)

• Nice effort making R a formal interface language for MLPACK

• GH repo Yashwants19/RcppMLPACK tracked the progress

Talk @ Apple 53/68

https://github.com/Yashwants19/RcppMLPACK

MLPACK ‘V2/V3’

High-level:

• A few of us were trying to update RcppMLPACK to ‘v2’

• Instead of embedding, an external library is used

• This makes deployment a little tricker on Windows and macOS

• We are still waiting on macOS installation of libraries

Now following GSoC 2020:

• Integrates new wrappers from the MLPACK side

• At last on CRAN for just about a week (!!)

• Nice effort making R a formal interface language for MLPACK

• GH repo Yashwants19/RcppMLPACK tracked the progress

Talk @ Apple 53/68

https://github.com/Yashwants19/RcppMLPACK

MLPACK

List of Algorithms:
• Collaborative filtering (with many decomposition techniques)
• Decision stumps (one-level decision trees)
• Density estimation trees
• Euclidean minimum spanning tree calculation
• Gaussian mixture models
• Hidden Markov models
• Kernel Principal Components Analysis (optionally with sampling)
• k-Means clustering (with several accelerated algorithms)
• Least-angle regression (LARS/LASSO)
• Linear regression (simple least-squares)
• Local coordinate coding
• Locality-sensitive hashing for approximate nearest neighbor search
• Logistic regression
• Max-kernel search
• Naive Bayes classifier
• Nearest neighbor search with dual-tree algorithms
• Neighborhood components analysis
• Non-negative matrix factorization
• Perceptrons
• Principal components analysis (PCA)
• RADICAL (independent components analysis)
• Range search with dual-tree algorithms
• Rank-approximate nearest neighbor search
• Sparse coding with dictionary learning

Talk @ Apple 54/68

(OLD) RCPPMLPACK: K-MEANS EXAMPLE

#include ”RcppMLPACK.h”

using namespace mlpack::kmeans;
using namespace Rcpp;

// [[Rcpp::depends(RcppMLPACK)]]

// [[Rcpp::export]]
List cppKmeans(const arma::mat& data, const int& clusters) {

arma::Col<size_t> assignments;
KMeans<> k; // Initialize with the default arguments.
k.Cluster(data, clusters, assignments);

return List::create(Named(”clusters”) = clusters,
Named(”result”) = assignments);

}

Talk @ Apple 55/68

RCPPMLPACK: K-MEANS EXAMPLE

Timing

Table 1: Benchmarking result

test replications elapsed relative user.self sys.self

mlKmeans(t(wine), 3) 100 0.028 1.000 0.028 0.000
kmeans(wine, 3) 100 0.947 33.821 0.484 0.424

Table taken ‘as is’ from RcppMLPACK vignette.

Talk @ Apple 56/68

MLPACK: LINEAR REGRESSION EXAMPLE

suppressMessages({library(utils); library(mlpack)})
data(”trees”, package=”datasets”)
X <- with(trees, cbind(log(Girth), log(Height)))
y <- with(trees, log(Volume))
lmfit <- lm(y ~ X)
summary(fitted(lmfit))

lr <- linear_regression(training=X,
training_responses=as.matrix(y))

lrpred <- linear_regression(input_model=lr$output_model, test=X)
mlfit <- as.vector(lrpred$output_predictions)
summary(mlfit)
all.equal(unname(fitted(lmfit)), mlfit)

[1] TRUE

Talk @ Apple 57/68

MLPACK

mlpack 3.* now on CRAN

• There is more, much much more
• Due to the awesome work of our GSoC student Yashwant
• Every mlpack algo is now accessible
• Now I just have to update a few slides :)

Talk @ Apple 58/68

SUGAR

Talk @ Apple 59/68

SYNTACTIC ‘SUGAR’: SIMULATING π IN R

Draw (x, y), compute distance to origin. Do so repeatedly, and ratio
of points below one to number N of simulations will approach π/4
as we fill the area of 1/4 of the unit circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

[1] 3.15600 3.15520 3.13900 3.14101
Talk @ Apple 60/68

SYNTACTIC ‘SUGAR’: SIMULATING π IN C++

Rcpp sugar enables us to write C++ code that is almost as compact.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

The code is essentially identical.
Talk @ Apple 61/68

SYNTACTIC ‘SUGAR’: SIMULATING π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

[1] TRUE

print(c(a,b), digits=7)

[1] 3.140899 3.140899

Talk @ Apple 62/68

SYNTACTIC ‘SUGAR’: SIMULATING π

The performance is close with a small gain for C++ as R is already
vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

test replications elapsed relative
1 piR(1e+06) 100 4.79 3.09
2 piSugar(1e+06) 100 1.55 1.00

Talk @ Apple 63/68

MORE

Talk @ Apple 64/68

DOCUMENTATION

• The package comes with nine pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys, Rcpp again in TAS)

• The rcpp-devel list is the recommended resource, generally
very helpful, and fairly low volume.

• StackOverflow has a fair number of posts too.
• And a number of blog posts introduce/discuss features.

Talk @ Apple 65/68

RCPP GALLERY

Talk @ Apple 66/68

THE RCPP BOOK

On sale since June 2013.

Talk @ Apple 67/68

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/

web https://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Talk @ Apple 68/68

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Who am I ?
	Introduction to Rcpp
	Introduction: Why?
	An Aside
	Introduction: How?
	Some Background
	How to: Main Usage Patterns
	Big Picture
	Machine Learning
	Sugar
	More

